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1 Abstract

The aim of this project is to analyse the fall of a person from very high al-
titudes with the aid of a helium filled weather balloon to slow their descent.
Descents both with and without a connected helium tank will be investi-
gated. The results showed that the ground impact speeds in both cases are
significantly less than the value had there been no balloon at all: 270kph.
However the ground impact speed in the case with both a tank and a balloon
(20kph) is significantly lower than that with only a balloon (140kph) due to
the variation of atmospheric pressure with altitude.

2 Introduction

We will focus on finding the ground impact speeds in the two aforemen-
tioned configurations. The reason for studying both configurations is that
carrying a pressurised tank would add a significant amount of weight which
will partially counteract the forces of buoyancy and drag. Whereas the lack
of a connected pressurised Helium tank will allow the balloon to shrink as
atmospheric pressure increases during the descent. So our goal is to find
which of these configurations is more e�cient in slowing the fall. Before we
attempt to find the ground impact speeds in the two cases, we must write
a secondary code to find an experimental constant which will come up in
Equation (7).

This paper will refer to an existing commercial weather balloon (No-
valynx 400-82421) and a high pressure gas cylinder (Hydra SP632). The
balloon has an uninflated radius of 0.54 metres and a burst radius of 3.4 me-
tres, so we can safely keep it inflated at 3 metres. The gas cylinder can hold
50 litres (0.05m3) of gas at a pressure of 2⇥107Pa and it has a mass of 50kg.

Firstly this paper shall list and explain all the physical laws and re-
lations that will be used, then it will show how these mathematical
expressions are used in the Matlab code. And finally, we will look at the
results of running the code and analyse them.
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3 Theory

3.1 Properties of the Earth’s Atmosphere

At ground level, P
atm

has an average value of 101 KPa and it drops ex-
ponentially as altitude increases, therefore in this problem the variation in
atmospheric pressure (and density) can not be ignored. Temperature also
varies with altitude; however, it decreases in the troposphere then it starts to
increase again in the stratosphere. Thus its behaviour is di�cult to model
therefore instead of using theoretical models for pressure, air density and
temperature, I will refer to a data table [1] of these measured values.

3.2 Properties of the Balloon

Balloons made from types of rubber that have a stress–strain relation of
the Mooney–Rivlin[2] type are described by equation (1). Although there
is experimental evidence [3] of hysteresis in rubber balloons when they are
repeatedly inflated and deflated, we shall ignore this phenomenon since in
this problem the balloon will only be inflated once.
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Where �P is the di↵erence between the pressure inside the balloon and
the atmospheric pressure, r is the radius of the balloon, r0 and t0 are
the radius and the thickness of the balloon, respectively, before it is in-
flated. The parameter µ is called the shear modulus and has a typical value
of 300kPa for rubber while the parameter ↵ usually takes the value 10/11 [4].

Using the ideal gas law for the contents of the balloon (where P

atm

and T

atm

are respectively the atmospheric pressure and temperature at the
balloon’s altitude, R is the ideal gas constant, n is the number of moles of
Helium in the balloon) we have:
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Which will give us a relation between r, P
atm

, T
atm

and n. Taking P0 =
2µt0
r0

and k = 1�↵
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Using Matlab’s built–in function roots this is easily solvable and it al-
ways results in one positive real value for r.
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3.3 Forces on the Balloon

Gravitational force: We will assume the approximation F

grav

= mg for
gravity holds at the altitudes of this problem, as this model fails by only 5%
at an altitude of 100km.

Drag force: We will also assume the person in this problem is point-like,
as the drag force on a weather balloon is much greater than that on a human
body. Where C

D

is the drag coe�cient (around 0.5 for a sphere), A is the
cross section area of the balloon, ⇢

atm

is the density of the atmosphere at
the altitude of the balloon, and v is the speed of the descent, this force is
given by:
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Buoyancy force: The main reason we use Helium is because it’s lighter
than air and thus experiences a decelerating buoyancy force given by:
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3.4 Inflation of the Balloon

The flow of gases slower than about 0.3 Mach speed can be approximated
as incompressible flow, so we are justified in applying Bernoulli’s equation:
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Where the subscripts indicate on which side of the gas cylinder’s valve the
values are taken, t refers to the tank’s side of the valve and b to the balloon’s
side. The di↵erence in gravitational energy (⇢gy

t

� ⇢gy

b

) is zero, and we’ll
take the speed of gas flow in the tank to be negligible. Thus using the
fact that the rate of Helium atoms entering the balloon per unit time is
proportional to the velocity of the gas (dn

dt

/ v) we get:
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p
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� P
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(7)

We will find the constant of proportionality in the next section.
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4 Code and Results

All of the time di↵erential equations we’ve come across can be solved com-
putationally using the Euler method depicted by equation (8).

x

n+1 = x

n

+�t

dx

dt

(8)

This involves a fair bit of errors as time increases, but this is more of a
problem with rapidly changing solutions. In this problem, solutions will
look more like exponential decays than oscillating functions so it’s safe to
use this method, decreasing step sizes (�t) also greatly increases accuracy.

4.1 Finding the constant C

The constant in (7) depends on the inner size and shape of the valve, it is
far easier and more accurate to use a measured value than to model gas
flow through a constriction. To do this we need to employ a secondary
program, this program will simulate a balloon inflating at ground level.
The Matlab code for this is included in Appendix A. A fair assumption is
that the balloon takes 10 minutes to fully inflate at ground level, using this
information, we can vary the constant and run the code iteratively until
the time taken to inflate the balloon fully is 10 minutes. The code works by
first calculating dn

dt

(dn(t)) then using that to find the number of moles in
the tank and in the balloon (ntank) and (nballoon) respectively. Next it
finds the radius of the balloon (rballoon) and from that the volume of the
balloon (Vballoon) and the new pressure in both the balloon (Pballoon)
and in the tank (Ptank). Using these new values of pressure, we find the
new value of dn

dt

and so on... The results we get are illustrated by Figure 1.

(a) Plot of balloon radius with time
(b) Plot of pressure inside the balloon
with time

Figure 1: Inflating a balloon at ground level

After some tuning, the constant turns out to be: C = 4⇥ 10�8
m

1
2
kg

� 1
2
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4.2 Falling with a balloon and a Helium tank

The full MATLAB code for a person falling with a weather balloon
connected to a Helium tank is included in Appendix B. This code works
similarly to the previous one but since the balloon is at high altitudes, the
risk of bursting is greater, so we employ a ”smart valve” on the tank, which
turns on only when the radius is less than 3 metres. This allows the balloon
to maintain a maximum radius of 3 metres throughout the descent. Also,
atmospheric pressure and temperature are fetched from a table of values
included in Appendix B. The sum of forces on the balloon is used to find
the acceleration, from that the velocity and altitude are found. Note that
the mass of the tank is added to the mass of the person and balloon, this is
in fact a significant addition.

The highest altitude a weather balloon can remain intact is about
45km so a choice of 35km would be a reasonable height to start from, since
any higher and there wouldn’t be enough pressure to have any e↵ect. The
results of running it with an initial altitude of 35km are shown in Figure 2.

(a) Plot of altitude against time

(b) Plot of speed against time

Figure 2: Falling with a balloon and a Helium tank
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The main features of these plots are that the fall lasts 23 minutes before
impact with the ground at a speed of 5.5m/s (19.8km/h) which is equivalent
to an unprotected fall from 1.54 metres o↵ the ground, which is very easily
survivable. To get a quantitative idea of how dangerous such an impact
can be, I will refer to a study by R. Cuerden [5]. The study showed that
pedestrians involved in crashes with vehicles travelling at similar speeds have
a 75% chance of surviving with minor injuries, a 23% chance of sustaining
severe injuries and a 2% chance of death.

4.3 Falling with only a balloon

This section uses the same previous code, save for the pressurised tank and
so the number of moles in the balloon is constant. The Matlab code for
this section is included in Appendix C, we will run it from the same initial
altitude of 35km.

Figure 3: Plot of y(t) Figure 4: Plot of dy

dt

(t)

Figure 5: Plot of r
balloon

(t)

Figure 6: Falling with only a balloon

This fall lasts 10 minutes before impact with the ground at a speed of
40m/s (144km/h). The reason the impact speed in this case is so much
greater than that in the first case is because an inflated balloon at high alti-
tudes (and thus high pressure) will deflate at lower altitudes. The decrease
in radius decreases the forces of drag and buoyancy and results in a higher
impact speed.
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5 Conclusion

The results of this study showed that a Helium filled weather balloon can
slow the descent of a skydiver to safe speeds. However, if the balloon is not
connected to a pressurised tank, due to the increase in atmospheric pressure
with decrease in altitude the radius of the balloon will drop significantly
compromising the decelerating forces,
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Appendix A: Inflating a balloon at ground level

This code uses a function called radiusmooneyrivlin which is included in
Appendix B

Vtank =0.4;

Pout = 101000;

R = 8.314;

T = 288;

Ptank (1) = 20000000;

ntank (1) = Ptank (1)*Vtank/R*T;

rballoon (1) = 0.54;

Vballoon (1) = 4*pi*rballoon (1) .^3/3;

Pballoon (1) = Pout;

nballoon (1) = Vballoon (1)*Pballoon (1)/(R*T);

tmax =900

timediv =1/100;

for t=1: tmax/timediv;

dn(t) = 40e-7* timediv *(Ptank(t)-Pballoon(t))^0.5;

ntank(t+1) = ntank(t) - dn(t);

nballoon(t+1) = nballoon(t) + dn(t);

rballoon(t+1)=radiusmooneyrivlin(nballoon(t),Pout ,T);

Ptank(t+1)=ntank(t+1)*R*T/Vtank;

Vballoon(t+1)=4*pi*rballoon(t+1) ^3/3;

Pballoon(t+1)=nballoon(t+1)*R*T/Vballoon(t+1);

end

figure

plot(timediv *(1: tmax/timediv),rballoon (1: tmax/timediv));
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Appendix B: Falling with a balloon and a Helium
tank

main.m

Vtank =0.05;

m=160;

g=9.8;

R = 8.314;

h(1) =35000;

T(1)=atmosphere(h(1) ,1);

Pout (1)=atmosphere(h(1) ,2);

rho(1)=atmosphere(h(1) ,3);

Ptank (1) = 20000000;

ntank (1) = Ptank (1)*Vtank/R*T(1);

rballoon (1) = 0.54;

Vballoon (1) = 4*pi*rballoon (1) .^3/3;

Pballoon (1) = Pout (1);

nballoon (1) = Vballoon (1)*Pballoon (1)/(R*T(1));

v(1)=0;

a(1)=-g;

tmax =40000;

timediv =1/50;

for t=1: tmax/timediv;

%inflate balloon

if rballoon(t) <3 && Ptank(t) >=Pballoon(t)

aa=t;

dnbydt(t) = 40e-7* timediv *(Ptank(t)-Pballoon(t))^0.5;

else

dnbydt(t) = 0;

end

ntank(t+1) = ntank(t) - dnbydt(t);

nballoon(t+1) = nballoon(t) + dnbydt(t);

rballoon(t+1)=radius_mooneyrivlin(nballoon(t),Pout(t),T(t))

;

Ptank(t+1)=ntank(t+1)*R*T(t)/Vtank;

Vballoon(t+1)=4*pi*rballoon(t+1) ^3/3;

Pballoon(t+1)=nballoon(t+1)*R*T(t)/Vballoon(t+1);

Fgrav = m*g;

Fbuoyancy = rho(t)*Vballoon(t)*g;

Fdrag = 0.5* rho(t)*v(t)^2*0.5* pi*rballoon(t).^2;

a(t+1) = (Fbuoyancy+Fdrag -Fgrav)/m;

v(t+1) = v(t)+a(t)*timediv;

h(t+1) = h(t)+v(t)*timediv +.5*a(t)*timediv ^2;

T(t+1) = atmosphere(h(t+1) ,1);

Pout(t+1) = atmosphere(h(t+1) ,2);

rho(t+1)= atmosphere(h(t+1) ,3);

10



if h(t+1) <=0

tmax=t;

break

end

end

figure

plot(timediv *(1: tmax),v(1: tmax));

radiusmooneyrivlin.m

function r = radiusmooneyrivlin(nballoon ,Pout ,T)

r0 =0.54;

t0 =0.0002;

mu = 300000;

R = 8.314;

p0 = 2*mu*t0/r0;

k = 0.1;

X = 3* nballoon*R/(4*pi);

poly = [ (p0*k/r0) Pout (p0*r0) 0 (-X*T) 0 (-p0*k*r0^5) 0

(-p0*r0^7) ];

r = roots(poly);

r = r((imag(r) == 0) & (r > 0));

end

atmosphere.m

function a = atmosphere(h,n)

%n=1 temperature; n=2 pressure; n=3 density

table = [288 ,101300 ,1.2; 281.5 ,90000 ,1.1; 275 ,80000 ,1;

268.5 ,70000 ,0.91; 262 ,62000 ,0.82; 255.5 ,54000 ,0.74;

249 ,47000 ,0.66; 242.5 ,41000 ,0.59; 236 ,36000 ,0.53;

229.5 ,31000 ,0.47; 223 ,26000 ,0.41; 216.5 ,23000 ,0.36;

216.5 ,19000 ,0.31; 216.5 ,17000 ,0.27; 216.5 ,14000 ,0.23;

216.5 ,12000 ,0.19; 216.5 ,10000 ,0.17; 216.5 ,9000 ,0.14;

216.5 ,7500 ,0.12; 216.5 ,6500 ,0.1; 216.5 ,5500 ,0.088;

217.5 ,4700 ,0.075; 218.5 ,4000 ,0.064; 219.5 ,3400 ,0.054;

220.5 ,2900 ,0.046; 221.5 ,2500 ,0.039; 222.5 ,2200 ,0.034;

223.5 ,1800 ,0.029; 224.5 ,1600 ,0.025; 225.5 ,1400 ,0.021;

226.5 ,1200 ,0.018; 227.5 ,1000 ,0.015; 228.5 ,870.0 ,0.013;

231.3 ,750 ,0.011; 234.1 ,650 ,0.0096; 236.9 ,560 ,0.0082];

if h <= 0

h = 1;

end

A = table(round(h/1000) +1,:);

a = A(n);

end
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Appendix C: Falling with an inflated balloon

Vtank = 0.05;

m = 70;

g = 9.8;

R = 8.314;

h(1) = 35000;

T(1) = atmosphere(h(1) ,1);

Pout (1) = atmosphere(h(1) ,2);

rho(1) = atmosphere(h(1) ,3);

Ptank (1) = 20000000;

ntank (1) = Ptank (1)*Vtank/R*T(1);

rballoon (1) = 3.5;

Vballoon (1) = 4*pi*rballoon (1) .^3/3;

Pballoon (1) = Pout (1);

nballoon = Vballoon (1)*Pballoon (1)/(R*T(1));

v(1) = 0;

a(1) = -g;

tmax = 1500;

timediv = 1/50;

for t=1: tmax/timediv;

rballoon(t+1) = radius_mooneyrivlin(nballoon ,Pout(t),T(t));

Vballoon(t+1) = 4*pi*rballoon(t+1) ^3/3;

Pballoon(t+1) = nballoon*R*T(t)/Vballoon(t+1);

Fgrav = m*g;

rhoBalloon = Pballoon(t+1)*2/R/T(t)/1000;

Fbuoyancy = rho(t)*Vballoon(t)*g;

Fdrag = 0.5* rho(t)*v(t)^2*0.5* pi*rballoon(t).^2;

a(t+1) = (Fbuoyancy+Fdrag -Fgrav)/m;

v(t+1) = v(t)+a(t)*timediv;

h(t+1) = h(t)+v(t)*timediv +.5*a(t)*timediv ^2;

T(t+1) = atmosphere(h(t+1) ,1);

Pout(t+1) = atmosphere(h(t+1) ,2);

rho(t+1) = atmosphere(h(t+1) ,3);

if h(t+1) <= 0

tmax = t;

break

end

end

figure

plot(timediv *(1: tmax),v(1: tmax));
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